酸提碱沉-三氯甲烷萃取法进行比较,同时对样品进 行了回流提取与超声提取的对比研究。结果显示, 选择甲醇超声提取药材时,提取效果好、效率高。

本实验将薄层色谱与高效液相色谱法结合,该 质量评价方法较以往单一评价指标更科学、系统。 通过对广西不同时节、部位排钱草药材中有效成分 含有量的测定结果可知,其叶与枝均不含 N , N-二 甲基色胺,而根部则含有该成分,但由于其含有量 较低,所以在薄层色谱中没有检测到相应斑点,而 利用敏感度较高的 HPLC 色谱则检测到这一特征吸 收峰。同时,排钱草的叶、枝、根部均含有5-甲 氧基-N,N-二甲基色胺,并且在9月份药材根部 中,其含有量最高,另外叶中该成分的含有量明显 高于枝。综上所述,在今后的质量控制中,应主要 选择广西9月排钱草药材的根部进行重点研究,可 达到更好的试验效果,而其他地方不同时节排钱草 药材中有效成分的含有量测定还需作进一步研究。

参考文献:

[1] 江苏新医学院. 中药大辞典: 下册[M]. 上海: 上海科学

- 技术出版社,1986: 2092.
- [2] 黄洁玲,钟鸣,余胜民,等.排钱草总生物碱对人肝星 状细胞增殖及肝纤维化相关胶蛋白、细胞因子的影响 [J]. 中国实验方剂学杂志, 2013, 19(13): 283-286.
- [3] 罗崇念, 卞庆亚, 王硕. 排钱草的药理研究与临床应用 [J]. 广西医科大学学报,2009,26(1):158-160.
- [4] 钟鸣,余胜民,杨增艳,等.排钱草总生物碱对免疫性 肝纤维化大鼠 I、Ⅲ、Ⅳ型胶原及 TGF-B, 表达的影响 [J]. 中西医结合肝病杂志, 2005, 15(1): 38-40.
- [5] 黄琳芸,钟鸣,杨增艳,等. 排钱草总生物碱对肝纤维化 大鼠血清干扰素-y和肝脏组织病理学的影响[J]. 中国中 医药科技,2006,13(2):101-102.
- [6] Joshi K C, Bansal R K, Singh P, et al. Components of the stem barks of Phyllarthron-comorense and Jacaranda-mimosaefolia and the roots of Desmodium pulchellum [J]. Indian J Chem, 1975,13(8): 869-870.
- [7] Shen C C , Wang S T , Tsai S Y , et al. Cinnamylphenols from Phyllodium pulchellum [J]. J Nat Prod , 2005 , 68 (5): 791-793.
- [8] 干 宁,李天华,杨 欣,等. 毛排钱草的化学成分分 析及其抗肿瘤活性研究[J]. 中草药, 2009, 40(6): 852-856.

HPLC-ELSD 法同时测定不同产地白果药材中 4 种萜内酯类成分

张群群¹, 李慧芬¹², 张学兰^{12*}, 吴 鹏¹, 王均秀¹, 宋梦晗¹, 赵 鑫¹ (1. 山东中医药大学, 山东 济南 250355; 2. 国家中医药管理局中药炮制传承基地, 山东 济南 250355)

摘要:目的 建立 HPLC-ELSD 法同时测定白果药材中白果内酯和银杏内酯 A、B、C。方法 白果乙酸乙酯萃取物 的分析采用 Kromasil C₁₈色谱柱 (250 mm×4.6 mm,5 μm); 流动相为甲醇-0.1% 甲酸水 (38:62); 柱温 30 ℃, 体积流量 0.8 mL/min。结果 白果内酯和银杏内酯 A、B、C 分别在 1.01 ~ 40.40 μg、1.03 ~ 41.20 μg、2.37 ~ 94.80 µg、1.51~60.40 µg 范围内线性关系良好 (r>0.9995), 平均回收率在 97.3%~99.2% 之间。5 个不同产地 (山东济南、临沂、泰安,广西桂林和江苏泰兴) 白果药材中四者的含有量分别为 75.55~219.73、54.79~ 135.88、200.37~853.39、119.31~498.06 μg/g。结论 白果中 4 种萜内酯类成分的总含有量以江苏省泰兴市产 者为最高。

关键词: 白果; 白果内酯; 银杏内酯 A; 银杏内酯 B; 银杏内酯 C; 产地; HPLC-ELSD

文章编号: 1001-1528(2016)01-0133-04 中图分类号: R284.1 文献标志码: A

doi: 10. 3969/j. issn. 1001-1528. 2016. 01. 030

Simultaneous determination of four terpene lactones in Ginkgo Semen from dif-

收稿日期: 2015-07-13

基金项目:济南市高校自主创新计划项目(201303027)

作者简介: 张群群 (1988—), 女,硕士,从事中药新药研发与中药炮制原理研究。Tel: 18753151090, E-mail: zhangqunqun01@163.com * 通信作者: 张学兰 (1963—),女,教授,从事中药新药研发与中药炮制原理研究。Tel: (0531) 89628081,E-mail: zhang8832440@ sina. com

ferent growing areas by HPLC-ELSD

ZHANG Qun-qun 1 , LI Hui-fen $^{1\,2}$, ZHANG Xue-lan $^{1\,2^*}$, WU Peng 1 , WANG Jun-xiu 1 , SONG Meng-han 1 , ZHAO Xin 1

(1. Shandong University of Traditional Chinese Medicine , Jinan 250355 , China; 2. Traditional Chinese Medicine Processing Technology Helitage Base , State Administration of Traditional Chinese Medicine , Jinan 250355 , China)

ABSTRACT: AIM To establish a method for simultaneously determining the contents of bilobalide and ginkgolide A , B , C in *Ginkgo Semen* by HPLC-ELSD. **METHODS** The analysis of *Ginkgo Semen* ethyl acetate extract was performed on Kromasil C₁₈ column (250 mm × 4.6 mm ,5 μm) , mobile phase was methanol-0.1% methanoic acid water (38:62) , column temperature was maintained at 30 °C , and flow rate was 0.8 mL/min. **RESULTS** Bilobalide and ginkgolide A , B , C had good linear relationships in the ranges of 1.01 – 40.40 μg , 1.03 – 41.20 μg , 2.37 – 94.80 μg and 1.51 – 60.40 μg , respectively (r > 0.999 5) . Their average recoveries were 97.3% – 99.2%. The contents of these four constituents in *Ginkgo Semen* from five different growing areas (Jinan , Linyi , Taian in Shandong , Guilin in Guangxi and Taixing in Jiangsu) were 75.55 – 219.73 μg/g ,54.79 – 135.88 μg/g ,200.37 – 853.39 μg/g and 119.31 – 498.06 μg/g , respectively. **CONCLUSION** The total contents of four terpene lactones in *Ginkgo Semen* is the highest in Taixing (Jiangsu) .

KEY WORDS: *Ginkgo Semen*; bilobalide; ginkgolide A; ginkgolide B; ginkgolide C; growing areas; HPLC-ELSD

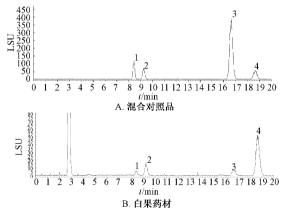
白果为银杏科植物银杏 Ginkgo biloba L. 的干 燥成熟种子,其味甘、苦、涩,性平,有毒,具 有敛肺定喘、止带缩尿的功能[1],含有银杏酸、 萜内酯、黄酮等成分[2-3],其中萜内酯类化合物 有银杏内酯 A、B、C 和白果内酯等[4-5]。研究表 明,银杏酚酸类成分具有致敏性、细胞毒性和免 疫毒性,为白果的主要毒性成分[6];白果萜内酯 是血小板活化因子的拮抗剂,对心脑血管疾病具 有独特的药理作用,广泛用于治疗和预防心脑血 管疾病[7]; 白果内酯具有提高痴呆小鼠的学习记 忆功能和抗卡氏肺孢子虫肺炎作用[8-9]。关于白 果药材的质量标准,《中国药典》2010年版一部 仅收载了成品的外观性状、粉末的显微特征及薄 层色谱的定性鉴别,缺乏有效成分或指标成分的 含有量测定指标和参数,难以控制白果药材的质 量。李转梅等[10]建立了白果药材及炮制品中白果 酸和总银杏酸含有量的测定方法,罗曼等[11]建立 了白果仁萜内酯类成分的 HPLC-ELSD 指纹图谱 定性分析方法,但未见对白果中萜类内酯成分定 量测定的相关报道。目前,银杏叶及其制剂中该 类成分的定量测定方法有 HPLC-ELSD、HPLC-MS/MS、UPLC-TQ-MS 等[12-14]。本实验建立了 HPLC-ELSD 同时测定白果药材中白果内酯和银杏 内酯 A、B、C 的方法,并测定了5 个不同产地、 批次白果药材中这些成分的含有量,可为其质量控

制和评价提供科学依据。

1 仪器与试药

Waters e2695 型 HPLC 色谱仪、e2424 型蒸发光散射检测器 (美国 Waters 公司); FA1604N 型电子天平(十万分之一,上海精密科学仪器有限公司); KQ-250E 型医用超声波清洗器(昆山市超声仪器有限公司)。

白果内酯、银杏内酯 A、银杏内酯 B、银杏内酯 C 对照品(中国食品药品检定研究院,供含有量测定用,批号分别为 110865-200605、110862-200608、110863-200508、110864-200906)。 HPLC 用甲醇为色谱纯; 水为娃哈哈纯净水; 其他试剂均为分析纯。


白果药材的产地分别为山东省济南市长清区、临沂市、泰安市、广西省桂林市、江苏省泰兴市,经山东中医药大学中药鉴定教研室李峰教授鉴定为银杏科植物银杏 $Ginkgo\ biloba\ L.$ 的成熟种子。除去杂质, $50\ ^{\circ}$ 下烘干,备用。

2 方法与结果

2.1 混合对照品溶液的制备 分别精密称取白果内酯 5.05 mg、银杏内酯 A 5.15 mg、银杏内酯 B 4.74 mg、银杏内酯 C 3.02 mg,置于1 mL量瓶中,加甲醇溶解并稀释至刻度,作为对照品溶液。分别吸取四种对照品溶液 0.2、0.2、0.5、0.5 mL,置于同一2 mL量瓶中,加甲醇稀释至刻度,摇匀,

制成每 1 mL 含白果内酯 0.505 mg、银杏内酯 A 0.515 mg、银杏内酯 B 1.185 mg、银杏内酯 C 0.755 mg 的混合对照品溶液。

- 2. 2 供试品溶液的制备 精密称取各样品粉末 (过 3 号筛) 5 g,分别置于索氏提取器中,加甲醇 80 mL,水浴回流提取 6 h 至无色,减压回收甲醇蒸干,残渣加水 20 mL,70 $^{\circ}$ 化水浴温热使其溶解。再往里加 2% 稀盐酸溶液 2 滴,乙酸乙酯萃取 3 次 (15、10、10 mL),合并提取液,5% 乙酸钠溶液 20 mL 洗涤,洗液再用乙酸乙酯 10 mL 洗涤,合并乙酸乙酯液及洗液,纯水洗涤 2 次,每次 20 mL,合并水洗液,10 mL 乙酸乙酯洗涤,合并乙酸乙酯液,10 mL 乙酸乙酯洗涤,合并乙酸乙酯液,10 mL 乙酸乙酯洗涤,合并乙酸乙酯液,回收至干,残渣用甲醇溶解,转移至 1 mL 量瓶中,加甲醇至刻度,摇匀,0. 22 μ m 微孔滤膜滤过,即得。
- 2. 3 色谱条件 Kromasil C_{18} 色谱柱 (250 mm × 4. 6 mm , 5 μm); 流动相为甲醇-0.1% 甲酸水 (38:62); 柱温 30 $^{\circ}$ C; 体积流量 0. 8 mL/min; 蒸发光检测器的漂移管温度 60 $^{\circ}$ C; 载气流量 25 L/min。在上述条件下,白果内酯和银杏内酯 A、B、C 与其他成分均可达到基线分离,见图 1。

 1. 白果内酯
 2. 银杏内酯 C
 3. 银杏内酯 A
 4. 银杏内酯 B

 1. bilobalide
 2. ginkgolide C
 3. ginkgolide A
 4. ginkgolide B

 图 1
 混合对照品与白果药材的 HPLC 色谱图

Fig. 1 HPLC chromatograms of mixed reference substances and *Ginkgo Semen* samples

2.4 线性关系考察 分别精密吸取 "2.1" 项下混合对照品溶液 $2 \times 10 \times 20 \times 40 \times 80~\mu L$,注入 HPLC 色谱仪,在 "2.3" 项色谱条件下进行测定,记录色谱峰峰面积,以进样量(μg) 对数为横坐标(X),峰面积对数为纵坐标(Y) 进行线性回归,计算回归方程。结果,各成分线性关系良好,见表 1。

表 1 4 种内酯类成分的线性关系

Tab. 1 Linear relationships of four terpene lactones

回归方程	r	线性范围/μg
Y = 1.778 6X + 3.871 8	0.9996	1. 01 ~40. 40
Y = 1.8335X + 4.3585	0.999 5	1.03 ~41.20
Y = 1.3624X + 4.3043	0.9996	2. 37 ~ 94. 80
$Y = 1.152 \ 2X + 4.390 \ 2$	0. 999 8	1. 51 ~ 60. 40
	Y = 1.778 6X + 3.871 8 $Y = 1.833 5X + 4.358 5$ $Y = 1.362 4X + 4.304 3$	回归方程 r Y=1.778 6X+3.871 8 0.999 6 Y=1.833 5X+4.358 5 0.999 5 Y=1.362 4X+4.304 3 0.999 6 Y=1.152 2X+4.390 2 0.999 8

- 2.5 精密度试验 精密吸取同一供试品溶液(山东省济南市长清区)10 μ L,注入 HPLC 色谱仪,连续进样 6 次,测定白果内酯和银杏内酯 A、B、C 的峰面积。结果,RSD 分别为 1.5%、1.5%和 1.8%,表明仪器精密度良好。
- 2. 6 稳定性试验 取同一供试品溶液 (山东省济南市长清区) 适量,室温下分别在 $0 \times 2 \times 4 \times 8 \times 12 \times 24 \text{ h}$ 进样 $10 \text{ }\mu\text{L}$, 测定白果内酯和银杏内酯 A、B、C 的峰面积。结果,RSD 分别为 1.6% 、 1.3% 、 1.9% 、 1.8% ,表明供试品溶液在 24 h 内稳定。
- 2.7 重复性试验 精密称取同一产地白果药材粉末 (山东省济南市长清区,过3号筛)6份,每份5g,按 "2.2" 项下方法制备供试品溶液,精密吸取 $10~\mu L$,在 "2.3" 项色谱条件下测定,计算白果内酯和银杏内酯 A、B、C 的含有量。结果,四种成分的平均含有量分别为 80、57、204、 $141~\mu g/g$, RSD分别为 1.1%、1.9%、1.9%、2.5%,表明该方法重复性较好。
- 2.8 加样回收率试验 精密称取含有量已知的白果药材 (山东省济南市长清区,过 3 号筛) 6 份,每份 2.5 g,精密加入白果内酯 (0.019 51 g/L)、银杏内酯 A (0.013 26 g/L)、银杏内酯 B (0.050 92 g/L)、银杏内酯 C (0.034 51 g/L) 对照品溶液 1 mL,甲醇补足至 80 mL,按 "2.2" 项下方法制备供试品溶液,精密吸取 10 μ L,在"2.3" 项色谱条件下测定,结果见表 2。
- 2.9 样品测定 精密吸取混合对照品和供试品溶液各 $10~\mu L$,注入 HPLC 色谱仪进行分析测定,计算样品中 4~种内酯类成分的含有量,结果见表 3~。

3 小结与讨论

白果萜内酯类成分在紫外末端有吸收,HPLC-UV 测定时灵敏度低,杂质干扰大,重复性差。本实验首次建立了 HPLC-ELSD 法同时定量测定不同产地白果药材中白果内酯和银杏内酯 $A \times B \times C$ 的含有量,对提取溶剂 $50\% \times 70\% \times 100\%$ 甲醇进行

表 2 加样回收率试验结果 (n=6)

Tab. 2 Results of recovery tests (n = 6)

化合物	称样量/	原有量/	加入量	/测得量/[回收率/	平均回	RSD/
10 🖂 10	g	$\mu \mathrm{g}$	$\mu \mathrm{g}$	$\mu \mathrm{g}$	%	%	%
白果内酯	2. 502 8	199. 82	195. 1	385. 3	95. 1	97. 3	2. 1
	2. 562 6	204. 59	195. 1	400. 3	100. 3		
	2. 512 9	200.63	195. 1	393.9	99. 1		
	2. 526 2	201.69	195. 1	388.0	95. 5		
	2. 572 6	205.40	195. 1	393.0	96. 2		
	2. 551 8	203.73	195. 1	393.8	97.4		
银杏	2. 502 8	137. 13	132.6	265. 4	96.7	98.0	2.3
内酯 A	2. 562 6	140. 40	132.6	273. 2	100. 1		
	2. 512 9	137. 68	132.6	264. 2	95. 4		
	2. 526 2	138. 41	132.6	272. 0	100.8		
	2. 572 6	140. 95	132.6	268.0	95.8		
	2. 551 8	139. 81	132.6	271.0	99. 0		
银杏	2. 502 8	512. 20	509. 2	1 025.4	100.8	97. 6	2. 2
内酯 B	2. 562 6	524. 44	509. 2	1 029.0	99. 1		
	2. 512 9	514. 28	509. 2	1 012.2	97.8		
	2. 526 2	517.00	509. 2	1 002.7	95.4		
	2. 572 6	526. 50	509. 2	1 021.4	97. 2		
	2. 551 8	522. 24	509. 2	1 007.0	95. 2		
银杏	2.5028	351.43	345. 1	690. 1	98. 1	99. 2	1.5
内酯 C	2. 562 6	359. 82	345. 1	703.9	99.7		
	2. 512 9	352. 85	345. 1	701.5	101.0		
	2. 526 2	354. 72	345. 1	700. 1	100. 1		
	2. 572 6	361. 23	345. 1	695.0	96. 7		
	2. 551 8	358. 31	345. 1	701. 1	99. 3		

表 3 4 种萜内酯成分含有量的测定结果 ($\mu g/g$, n=2)

Tab. 3 Determination results of the contents of four terpene lactones ($\mu g/g$, n=2)

产地	白果	银杏内酯	银杏内酯	银杏内酯	总含
) ie	内酯	A	В	C	有量
山东省济南市长清区	₹ 79.84	54. 79	204.66	140. 42	479. 70
山东省济南市长清区	₹ 79.45	57. 96	200. 37	144. 24	482. 02
山东省临沂市	111.37	90.45	301.53	210.80	714. 15
山东省临沂市	113. 21	94.60	294. 89	199.68	702. 38
山东省泰安市	82. 19	63.65	277. 64	166. 75	590. 24
山东省泰安市	79. 81	63.04	277. 41	167. 43	587. 69
广西省桂林市	77. 47	60. 22	372. 04	133. 57	643.31
广西省桂林市	75. 55	59.40	368. 34	119. 31	622. 61
江苏省泰兴市	219. 73	135. 88	853.39	498. 06 1	707.06
江苏省泰兴市	216. 85	135. 20	832.62	488. 68 1	673.36

比较,发现以甲醇为溶剂提取的 4 种萜内酯成分总含有量最高;对甲醇索式回流 6 h 和甲醇超声 1 h 进行比较,发现前者提取效果较好,而且色谱峰峰形理想,同时还对流动相等参数进行了考察。综上所述,该方法简便、可靠、有效,可用于白果药材中白果内酯和银杏内酯 A x B x C 成分的测定,为

其质量控制提供一定参考。

不同产地、批次白果药材中白果内酯和银杏内酯 A、B、C 成分的含有量相差较大,四者总含有量最高者是最低者的 4 倍。因此,建议将这 4 种成分的含有量限度纳入白果药材质量标准中,以期更全面地控制其质量。

由于白果中内酯类成分的含有量较低,测定时取样量大,而且甲醇提取液中含有较多色素等杂质,干扰测定,对仪器损害严重,故需作进一步纯化。本实验采用乙酸乙酯萃取法,将四种萜内酯类成分充分转移到乙酸乙酯中,可排除色谱测定时杂质的干扰,而且它们与其他成分分离度良好。

参考文献:

- [1] 国家药典委员会. 中华人民共和国药典: 2010 年版一部 [S]. 北京: 中国医药科技出版社,2010: 100.
- [2] 傅丰永,于德泉,宋维良,等. 白果化学成分的研究[J]. 化学学报,1992,28(1):52-56.
- [3] 王 琴,温其标. 银杏种仁中活性成分及其药理作用的研究进展[J]. 现代食品科技,2006,22(1): 164-167.
- [4] 周桂生,姚 鑫,唐于平,等. 白果仁化学成分研究[J]. 中国药学杂志,2012,47(17):1362-1366.
- [5] 周桂生,姚 鑫,唐于平,等.银杏中种皮化学成分的分离 及鉴定[J].植物资源与环境学报,2013,22(4):108-110.
- [6] 杨剑婷,吴彩娥. 白果致过敏成分及其致敏机理研究进展 [J]. 食品科技,2009,34(6): 282-286.
- [7] 叶 敏,果德安.银杏萜内酯的研究概况[J].世界科学技术:中医药现代化,2003,5(1):33-38.
- [8] 黄 欢,曹明成,朱正义,等. 白果内酯对血管性痴呆小鼠的保护作用[J]. 安徽医药,2013,17(3): 383-386.
- [9] 唐小葵, 倪小毅, 陈雅棠, 等. 白果内酯抗大鼠卡氏肺孢子虫肺炎的实验研究[J]. 第三军医大学学报, 2003, 25 (10): 851-853.
- [10] 李转梅,张学兰,李慧芬,等. 白果不同部位及不同炮制品中白果酸和总银杏酸定量比较[J]. 中成药,2015,37
- [11] 罗 曼,鲍家科,熊慧林,等. 白果仁萜类内酯成分的指纹 图谱研究[J]. 中成药,2011,33(9):1465-1469.
- [12] 巩丽丽,田景振. HPLC-ELSD 法测定银杏叶提取物中萜内酯含量[J]. 山东中医药大学学报,2013,37(1):69-70.
- [13] 沈 涛,高彦慧,娄红祥. LC-MS/MS 快速测定不同采摘时间银杏叶中银杏内酯和白果内酯的含量[J]. 中国药学杂志,2008,43(5):380-383.
- [14] 姚 鑫,周桂生,唐于平,等.基于 UPLC-TQ-MS 考察不同 树龄果用银杏叶萜内酯含量变化规律[J].中国中药杂志, 2013,38(3):376-380.